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A numerical method is developed for solution of the full nonlinear equations governing 
irrotational flow with a free surface and variable bed topography. It is applied to the 
unsteady motion of non-breaking water waves of arbitrary magnitude over a horizontal 
bed. All horizontal variation is approximated by truncated Fourier series. This and 
finite-difference representation of the time variation are the only necessary approx- 
imations. Although the method loses accuracy if the waves become sharp-crested at  
any stage, when applied to non-breaking waves the method is capable of high accuracy. 

The interaction of one solitary wave overtaking another was studied using the 
Fourier method. Results support experimental evidence for the applicability of the 
Korteweg-de Vries equation to this problem since the waves during interaction are 
long and low. However, some deviations from the theoretical predictions were 
observed - the overtaking high wave grew significantly at the expense of the low wave, 
and the predicted phase shift was found to be only roughly described by theory. A 
mechanism is suggested for all such solitary-wave interactions during which the high 
and fast rear wave passes fluid forward to the front wave, exchanging identities while 
the two waves have only partly coalesced; this explains the observed forward phase 
shift of the high wave. 

For solitary waves travelling in opposite directions, the interaction is quite different 
in that the amplitude of motion during interaction is large. A number of such inter- 
actions were studied using the Fourier method, and the waves after interaction were 
also found to be significantly modified - they were not steady waves of translation. 
There was a change of wave height and propagation speed, shown by the present 
results to be proportional to the cube of the initial wave height but not contained in 
third-order theoretical results. When the interaction is interpreted as a solitary wave 
being reflected by a wall, third-order theory is shown to provide excellent results for 
the maximum run-up at the wall, but to be in error in the phase change of the wave 
after reflection. In fact, it is shown that the spatial phase change depends strongly on 
the place at  which it is measured because the reflected wave travels with a different 
speed. In  view of this, it is suggested that the apparent time phase shift at  the wall 
is the least-ambiguous measure of the change. 

1. Introduction 
A widely used model for the propagation of waves on water uses the approximation 

in which the fluid is assumed to be irrotational and incompressible, so that a velocity 
potential exists that satisfies Laplace’s equation throughout the fluid and simple 

14 F L M  1x8 



412 J .  D. Fenton and M .  M .  Rienecker 

kinematical relations on solid boundaries; both equations are linear. The nonlinearity 
of the water-wave propagation problem comes from the dynamic and kinematic free- 
surface conditions. Analytical approximations to these equations include (i) lineariza- 
tion, through which a host of physical problems have been solved and apparent 
phenomena explained, (ii) the assumption that horizontal variation is slow, giving the 
long-wave equations, (iii) the weakly nonlinear Schrodinger equation for deep water, 
and (iv) the weakly nonlinear shallow-water equations such as the Korteweg-de Vries 
equation and Boussinesq’s equations, which have been used to study the interactions 
of solitary waves with some success. 

As the Korteweg-de Vries (KdV) equation is used to describe the propagation and 
overtaking interaction of solitary waves, but is a first-order approximation only in 
nonlinearity and shallowness, it  would be most interesting to solve the exact equations 
by accurate numerical means to test the applicability of the KdV equation, and to 
show if and where it fails to describe the interaction. Some experimental evidence 
(Weidman & Maxworthy 1978) suggests that it is in fact a good approximation, but 
no measurements of the waves after interaction were presented to test whether the 
waves emerge unscathed, as the theory predicts. For the case of two solitary waves 
propagating in opposite directions through each other, there are significant differences 
between experimental results (Maxworthy 1976) and theory based on Boussinesq’s 
equations (Oikawa & Yajima 1973). Su & Mirie (1980) recast the nonlinear surface 
boundary conditions into a pair of equations involving the free-surface elevation and 
the velocity along the horizontal bottom boundary. They then determined a third- 
order perturbation solution to the head-on collision of two solitary waves with the 
result that, although the waves emerged from the collision unchanged in height, they 
were asymmetric and changed slowly in time. Thus some of the essential differences 
between approximate theory and experiment still remain. These differences need to 
be resolved, and perhaps the best way of doing this is to use an accurate numerical 
method in which many of the experimental difficulties can be avoided. 

Several schemes have been proposed to solve the complete set of equations without 
essential analytical approximation. Chan & Street (1970) used a marker-and-cell 
technique to study the reflection of a solitary wave by a vertical wall. A finite spatial 
grid was used throughout the fluid so that the field equation was to be satisfied, by 
way of finite-difference approximation, at  each grid point. The surface was defined by 
Lagrangian marker particles. It was noted that the wave after reflection was un- 
changed, a surprising result for an interaction during which the wave grew to a height 
of twice the incident wave, making the problem quite nonlinear. Brennen and Whitney 
(see Brennen 1971) used a Lagrangian flow description with a finite-difference mesh to 
study some waves generated by boundary movement. Neither of these methods seems 
to have been much further used. Whitney (1971), also using fluid particles to define 
the boundary, exploited irrotationality to use techniques of complex analysis in 
reducing the general problem to one that needs to be solved only on the boundary. 
Byatt-Smith (197 1)  developed a set of nonlinear integro-differential equations, and 
from these obtained some approximate analytical solutions, including a second-order 
approximation to the reflection of a solitary wave by a vertical wall. No numerical 
solution of his full equations has been attempted, their nonlinearity making this task 
rather daunting. 

For water of infinite depth Longuet-Higgins & Cokelet (1976) developed a method 
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using boundary particles and, by exploiting irrotationality throughout the flow field, 
reduced the problem to one of solving a linear integral equation on the free surface as 
part of the time-stepping procedure. It was necessary to take great care with the 
finite-difference approximations, but provided this was done the method proved 
capable of describing even plunging breakers, as well as investigating the stability of 
waves on infinitely deep water. A slow numerical instability was noted, but it was 
suppressed by repeated smoothing. Fenton & Mills (1977) showed how that method 
could be applied to fluid with arbitrary solid boundaries, but were unable to produce 
results. 

Most of the above methods depended on the use of point values to represent con- 
tinuous variation and used finite-difference methods for differentiation and integra- 
tion. If the flow region is large, as in the case for solitary-wave interactions, and 
boundary radii of curvature small, then the numerical approximations through finite 
differences may be rather poor. It has been shown by Fornberg & Whitham (1978) and 
by Abe & Inoue (1980) that spectral and pseudospectral methods, using Fourier series 
to represent horizontal variation, were particularly accurate and effective in solving 
the Korteweg-de Vries equation, and were to be preferred to finite-difference methods. 
Multer (1973) used Fourier methods in an attempt to solve the full nonlinear equations 
numerically. The free surface was defined by finitely spaced boundary particles as 
used in several of the finite-difference methods described above. While this is an 
advantage for finite-difference methods because the computational particles tend to 
congregate where curvatures are high, it is not an advantage for Fourier approxima- 
tion (as observed by Rienecker & Fenton (1981) in Fourier approximations of steady 
waves). In  addition, if the particles are free to move, then one of the advantages of 
Fourier approximation is lost, namely that the trapezoidal rule can be used for 
integrations with the same accuracy as the Fourier approximation. Through the use 
of low-order numerical integration and the accrual of rounding errors in an orthogonal- 
ization process, Multer found that the results obtained were of finite accuracy and he 
experienced some trouble with growing high-frequency oscillations. 

In  $ 2  the development of an alternative numerical method for solving the full 
nonlinear equations for wave motion on irrotational flow is described. It is based on 
finite-Fourier-series approximation for all spatial variation and is found to be relatively 
accurate and stable. In $ 3  its application to the interactions of solitary waves is 
described, for waves travelling in the same direction and also in opposite directions. 
A number of features of the interactions are discussed. 

2. Numerical method 
2.1. Equations of motion 

A solution is sought to the equations governing the evolution of waves travelling over 
a layer of fluid on a horizontal bed. The more general case of an arbitrary and possibly 
moving bottom is considered in the appendix. All motions considered here are irrota- 
tional and two-dimensional so that a velocity potential $(x, y, t )  exists and the velocity 
components (u, v) are given by 

u = -  a$ a$ a x ,  V = -  aY ’ 
where x and y are respectively fixed horizontal and vertical co-ordinates with origin 
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on the horizontal bed. If the fluid is assumed to be incompressible, 4 satisfies Laplace's 
equation throughout the fluid: 

-+- = 0. 

On the free surface, defined by y = v (x , t ) ,  the dynamic and kinematic boundary 
conditions must be satisfied. The dynamic condition is the pressure equation: 

(1)  
a 2 4  a 2 4  

ax2 ay2 

where p is the pressure on the free surface and will be assumed to be zero throughout 
this work, p is the fluid density, and C is a constant. In the above equations, and 
henceforth, all variables have been non-dimensionalized with respect to some depth 
scale h and gravitat,ional acceleration g. The kinematic condition on y = ~ ( x ,  t )  is 

and the remaining kinematic condition, that no fluid pass through the horizontal 
bottom, is 

!9 ( x ,  0, t )  = 0. 
aY 

(4) 

I t  is not essential to have the origin on the bottom - it merely simplifies the equations 
used subsequently. In addition to the above equations, initial conditions $(x, y, 0) and 
T , J ( X ,  0) have to be specified. 

Because of their nonlinearity there have been relatively few attempts to solve these 
equations without essential analytical approximations. Their essential structure is 
not complicated, however, for the field equation (1)  and the boundary condition (4) 
are linear and do not contain a time derivative. The surface-boundary Conditions are 
nonlinear, but the time derivatives in each are linear and of first order, so that, if an 
initial solution is known, advancing this solution in time should be a relatively simple 
linear process. Perhaps the most severe problem is that of approximating accurately 
the dependent variables $(x , y , t )  and q(x,t)  and their derivatives. In this work, 
variation in the horizontal direction will be approximat'ed by Fourier series which are 
well known to be very accurate, provided the function approximated is sufficiently 
continuous. Time variation will be approximated through t,he use of discrete point 
values. 

2.2. Fourier approximation 

It is assumed that all dependent variables 4 and 7 can be represented at  any instant 
in time by Fourier series in x ,  throughout the region of interest. This requires that all 
motion be periodic in x ,  wit'h some finite period L, which is referred to here as the wave- 
length. While this is a limitation on the general applicability of the method, there are 
a large number of problems in which an implied periodicity is not an important re- 
striction. This assumption, which for the free-surface elevation may be writ'ten 

V ( X + L ,  t )  = 5% t ) ,  

is modified in the case of the velocity potential because in general it will change over 
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one wavelength without affecting the periodicity of the fluid motion, which only 
involves derivatives of q5. Thus 

$W+L,Y,t) = cP(X,Y,t)+ UL, 
where U is some constant which can be shown to be the mean horizontal velocity of 
the fluid for constant y and t .  Irrotationality requires U to be independent of y ,  and 
periodicity of the motion ensures that it is independent oft. 

The free surface may be expressed as a finite complex Fourier series: 

1 *N 
y(x ,  t )  = - q ( t )  exp ( - i jkx) ,  N j =  -@7 

for some positive even integer N .  In  this expression, only half the contributions at 
j = _+ +N are included in the summation, the q(t) are complex coefficients, and the 
wavenumber k is given by k = 2n/L. Since 7 is a real quantity, Y-j = Yj* (the complex 
conjugate of 5) for all j .  If a t  any instant q is known a t  the N discrete points xm, such 
that kx,, = 2nm/N, m = - gN, ..., &N,  then the q(t) may be obtained by a discrete 
Fourier transform of the 7(xm, t ) ,  denoted by 9 [ 7 ( m ,  t ) ] :  

+N q(t) = C ~ ( m ,  t )  exp (i2nmjlN) 
m= -4N 

where r](m, t )  = 7(xm, t ) .  From (5) 
1 

q(m, t )  = - C q ( t )  exp ( - i2nmj/N),  
N j  

and this is just the inverse discrete Fourier transform of q ( t )  : 

q(m, t )  = 9-1[q(t)]. 
Again, the summation in (6) involves a factor of + at the end-points m = &N and 
this is the convention assumed throughout the following work, where the limits are 
not shown explicitly but are to be taken as - $N to $N.  Hence the discrete transform 
and its inverse are essentially trapezoidal summations. 

The Fourier-series approximation can be used to obtain accurate values of ar/ax 
at the computational points xm. The series ( 5 )  can be differentiated term by term with 
respect to  x to give . 

a7 ik 
- (x , t )  = --Cjq(t)exp(-ijkx).  
ax Ni ( 7 )  

If ~ ( x ,  t )  is sufficiently continuous the $\t) decay faster than any negative power ofj ,  
that is almost exponentially, and the series (7)  should be a very accurate approxima- 
tion to Q / a x  (despite each term being multiplied b y j )  provided N is large enough so 
that truncation of the series does not introduce unacceptable error. With x = xm, (7 )  
gives 

2 (xm, t )  = - Z j q ( t )  exp ( - i 2 n m j / ~ )  
- ik 

ax N i  

= - ikg- ' [ j? . ( t ) ]  

= - i k9 -*[ j9[q (n ,  t ) ] ] .  
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Thus the Fourier approximation can be used to give an accurate value for the deriva- 
tive a t  any of the discrete grid points with the advantage that fast-Fourier-transform 
techniques can be used for computational efficiency. 
#(z, y, t )  can also be represented by a Fourier series in x: 

(9) 

where U is the quantity, introduced above, such that UL is the amount by which $ 
changes over one wavelength L. It is important to include thia possible discontinuity 
in $ explicitly so that the @(j, y, t )  are Fourier coefficients of a continuous function - 
otherwise, for a discontinuous function, the Fourier coefficients decay like l/j, the 
series would show Gibbs' phenomenon, and term-by-term differentiation would be 
meaningless. 

If (9) is differentiated twice with respect to x, twice with respect to y, and the results 
substituted into Laplace's equation, (1) becomes 

1 
$@, Y, t )  = ux + c. w j ,  Y, t )  exp ( - i j kx ) ,  

3 

-- j2k2@ = 0 for all j ,  y, t .  
8Y2 

The bottom boundary condition (4) is satisfied if a@/@ = 0 for all j, t .  A general 
solution satisfying the equations is 

where D is some depth, typically the mean, so that on the surface (7 N D )  for the 
case of deep water the hyperbolic function ratio tends to exp [lj l k(7 - D ) ] ,  whose 
argument is finite and so the method can be used for all depths. 

Expression (9) becomes 

which satisfies Laplace's equation (1) and the bottom-boundary condition (4) identic- 
ally. Expressions for q5, and $v which are needed for the nonlinear surface-boundary 
conditions (2) and (3) are obtained by differentiating (10) term by term: 

cosh jky 
exp ( - ijkx), 

ik 
$,(x,y,t) = U - - x j A  t - 

N )coshjkD 

so that the horizontal velocity on the surface a t  17: = x, is 

where 7, = ~ ( m ,  t )  = q(xm, t ) .  Similarly, the vertical velocity a t  the surface may be 
writt,en 

Fast-Fourier-transform techniques cannot be used to evaluate (12) and (13) because 
the surface elevation, which varies with mJ appears in each of the terms of the Fourier 
inversion. The series must be evaluated formally; this can be done more quickly by 
exploiting the fact that A+(t) is equal to A;@), the complex conjugate of A,(t). 
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2.3. Numerical solution of the equations 

417 

The surface boundary conditions may be written, at  the N discrete values xm, 

@,, g,, t )  = c - t l (xnt ,  t )  - t[u"m, t )  + v2(m, 01, at (14) 

each for m = - +N,  . . ., &N - 1. The equations for m = &N are, by periodicity, identical 
with the equationsfor m = - 4N. If the Fourier coefficients A,(t), the surface elevations 
g(xm, t )  and C are known, then all quantities on the right-hand side of these equations 
can be calculated using (8), (1  2 )  and (13), so that values of the time derivatives on the 
left-hand side are known. With the time domain represented by discrete points at  
intervals of At, so that after I intervals ti = ZAt, finite-difference approximations are 
used for the time variation in (14) and (15). Of all the methods of solving systems of 
differential equations with initial conditions specified, one of the best compromises 
between accuracy and simplicity is the leapfrog method, in which centred finite 
differences are used. Using this, the value of g at time step 1 + 1 can be found from 

Substituting (15), an explicit expression for this value of r] is obtained 

Advancing the rest of the solution is rather more complicated, and computationally 
expensive. This is because advancing the values of q5 at points on the surface, as might 
be done using (14), gives information about q5 on the arbitrary curve in space g@, t ) ,  
from which it is not possible to obtain simply the derivatives q5z and q5v used in the 
next time step. These partial derivatives are obtained from the Fourier series (12) and 
(13), so that, if the updated Fourier coefficients A3(ti+l) can be obtained, the solution 
can proceed. Differentiating (10) with respect to time, and substituting x = xm, t = t,, 
and the surface elevation y = g(z,, tz) gives 

(m = - 4  N ,  ...,& N - 1 ) .  (17) 

Values of the left-hand side are obtained from (14) at time t,, and all quantities on the 
right-hand side are known at this time except the aA,(t,)/at, for which (17) provides 
N linear equations (written for the N points m = - +N,  . . . , +N - 1).  These unknowns 
are in fact N complex unknowns, or 2N real unknowns; however,.in setting up the 
equations half of these can be eliminated by using A-,(t) = A,*(t). It is the solution of 
these equations which takes most computational time. 

With the now known values of aA,(t,)/at, the coefficients are stepped forward in 
time using the same leapfrog method as in (16): 
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To commence solution, initial values of q(xm,tl) and A,(tl) a t  1 = 0 and 1 must be 
known. Obtaining these initial conditions can be a difficult procedure, and methods 
might vary according to the problems tackled. Discussion of the methods used in the 
present work will be presented in the sections where solution of specific problems is 
described. 

2.4. Phase errors and stability 

Apart from the choice of a finite value of N in the Fourier series representing $, q and 
their spatial derivatives, two other factors limit the accuracy of the numerical scheme 
proposed above: (i) computer rounding errors, and (ii) the truncation error in the 
approximation of time derivatives by finite differences. The latter may be reduced by 
choosing a small value for the time increment At; however, provided reasonable 
accuracy can be assured, it is desirable to choose the largest-possible value of At so as 
to reduce computer time. In  the numerical solution of partial differential equations the 
magnitude of the time increment At is often subject to harsh limitations to ensure 
stability of the scheme. In  order to obtain a guide to an upper bound on At for t.he full 
nonlinear equations considered in this work, the stability of the numerical scheme for 
the linearized equations is investigated. 

The linearized version of (1)-(4) describes the evolution of small dishrbances on a 
uniform flow of velocity U and depth 1 : 

a 2 4  a 2 6  -+ -=o  ( - o o < x < o o ,  O < y < l ) ,  
ax2 a g  

% ( X , O )  = 0 
aY 

for all x, 

A solution for $ satisfying ( 1 8 )  and ( 1 9 )  is 

$(x,  y ,  t )  = B, eiWt e-ivkx cosh vky, 

where k is the fundamental wavenumber, v a positive integer such that vk is the 
wavenumber of this assumed solution, w is its radian frequency, and B, is a constant. 
Similarly, if B, is a constant, a solution for q is 

q(x,  t )  = 1 + B2 ei(ot-vkz). 

Substituting these into the linearized boundary conditions (20) and (21) gives 

( - vktanh vk i w  - ivkU q(x,  t )  - 1 
i w  - ivkU 1 ) ( $ ( x ,  1 4 ) )  = (0) 

9 

and the condition that these homogeneous equations have a non-trivial solution, when 
the determinant of the coefficient matrix is zero, is 

w = vkU -t (vk tanh vk)) = cr(vk). 

This equation is the well-known linear dispersion relation for waves travelling on a 
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stream of velocity U ,  the first term giving the Doppler contribution to the apparent 
frequency, as waves of wavenumber vk are convected past at speed U ,  the second 
term giving the contribution to the frequency as waves travel upstream or downstream 
at  speed (tanh vk /vk ) i .  

If, instead of being found by direct evaluation, the time derivatives in ( 2 0 )  and ( 2 1 )  
are approximated by the centred-difference scheme of $ 2 . 3 ,  then iw in the matrix 
above is replaced by (i sin wAt)/At,  and the solution requires 

( 2 2 )  

The numerical frequency w is not the same as the physical frequency u, and the 
physical wave lags in phase behind the numerical wave when IaAtl c 1 so that 

w 2: u( 1 + $((rAt)2).  

In  the limit as At-tO,  w = CT and there is no phase lag. This is not so when finite 
differences are used for spatial as well as temporal variation. Orszag (1971) has shown 
that the phase error is less when Fourier series are used in space than when high-order 
finite-difference schemes are used. 

The main components of the motion, with finite amplitude but low frequency (r, 
will be described quite accurately by the proposed scheme of 3s2 .2  and 2.3.  The high- 
frequency components will be described less accurately, but if the motion is sufficiently 
well-behaved the amplitudes of these components will be small. 

The stability of the scheme may be investigated directly from ( 2 2 ) .  Real values of 
w ,  corresponding to the propagation of waves without exponential growth or decay, 
are possible if I (r( vk) At I < 1.  For positive values of CT and At the criterion for stability 
can be written 

sin wAt = a( vk) At. 

1 

vkl Ul + (vk tanh vk)*' 
At G 

Examination of the denominator shows that it is a monotonically increasing function 
of vk, so that the most demanding criterion for stability is when v is as large as possible, 
which in the present scheme is &N. If the fundamental wavelength L is divided into 
N equal steps Ax, then 

and the criterion becomes 
1 

At < 
-1UI n + (Gtanh&)t' n 
Ax 

( 2 3 )  

For practical values of Ax, the tanh ( n / A x )  in ( 2 3 )  can be approximated by unity, 
giving the approximate criterion 

and the effect of a finite convective velocity U in restricting At is clear. Obviously i t  is 
desirable to perform calculations in a frame in which U is as small as possible, that is 
in a frame in which the waves travel on quiescent fluid. (However, in this frame the 
waves propagate a t  finite velocity and the time step may be governed by the truncation 



420 J .  D. Fenton and M .  M .  Rienecker 

error of the finite-difference approximations to the time derivatives.) In  this case, 
U N- 0, and the approximate stability criterion becomes 

At < (Ax/n)i ,  (24) 

which is a particularly generous criterion compared with that obtained from finite- 
difference approximations to  the diffusion equation, when the limiting time step is 
proportional to   AX)^, and with that obtained from Fourier approximation applied to 
the Korteweg-de Vries equation, when the limit is proportional to   AX)^ (Fornberg & 
Whitham 1978). In  each of these methods, however, the time-stepping can be done 
explicitly - in the method proposed above, it is necessary to solve a matrix equa- 
tion at each time step; thus the large time steps allowed by (24) are highly 
desirable. 

The above analysis applies only to the propagation of infinitesimal waves; the 
question of nonlinear stability can only be answered in actual computations. This will 
be described in $ 3  in more detail. In  practice it was found that for the propagation of 
strongly nonlinear waves of large amplitude the linear criterion was necessary but not 
sufficient for stability, and most computations were done with At less than that allowed 
by the analysis. For most of the wave interactions considered the value of At was 
governed by the truncation error rather than the stability criterion. It was found that 
there was no slow sawtooth instability such as that described by Longuet-Higgins & 
Cokelet (1976). However, the method was found to  suffer from a kind of nonlinear 
computational instability if at any stage the computations ceased to  become accurate, 
such as when a sharp crest developed. If this occurred, the Fourier coefficients grew 
sufficiently for truncation of the series to  be unacceptably inaccurate, leading to 
greater errors; the process fed on itself and quickly became unstable. Provided accuracy 
could be maintained, through sufficiently large values of N and sufficiently small time 
steps, this instability never occurred and the solution could proceed without smoothing 
or correction for thousands of time steps. 

2.5. Check on accuracy - evaluation of energy integrals 
Fundamental quantities that should be conserved are the mass of the fluid and the 
sum of the kinetic and potential energies of the motion. Evaluation of these quantities 
during the course of solution provides a check on the accuracy of the solution at any 
time, Each quantity involves integrals over the whole fluid, but can be reduced to 
integrals only in x. The most convenient numerical means of evaluating integrals is 
the trapezoidal rule, which for periodic integrands can be very accurate. In  fact, it can 
be shown that the numerical error in evaluating an integral by using the trapezoidal 
rule on equispaced data at N discrete points is of the order of magnitude of the sum 
from &N + 1 to  GO of the coefficients of the Fourier series of the integrand. This is also 
the order of magnitude of the Fourier approximations developed in 52.2, where the 
Fourier series were truncated at _+ &N, and all subsequent contributions ignored. 
Thus, it is in keeping with the accuracy of the proposed numerical method to  evaluate 
all integrals in x by the trapezoidal rule. 

Consider the fluid motion as assumed above, which is periodic in x, but of arbitrary 
finite amplitude. The three integrals of the motion will be obtained here in terms of 
quantities calculated in the course of the numerical solution. 
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2.5.1. Mass of$uid. The total mass of fluid, per unit of length normal to the flow, is 

which, because the fluid has constant density, may be written 

M = ps i”  q(x, t )  dx. 
- #L 

Trapezoidal-rule evaluation of the integral gives a quantity proportional to one already 
used in the numerical calculations, namely the first Fourier coefficient Y,(t), as given 
by (6). It is convenient simply to use Y,(t), which should be constant, as a measure of 
mass conservation. 

2.5.2. Potential energy o f j u i d .  The potential energy, per unit length normal to the 
flow, relative to some datum h above the bottom and relative to the potential which 
a layer of fluid of this thickness would have is 

v = SiL J*(z*t)p(y - 1 )  dydx  
-1L 1 

- f L  
= (q(x, t )  - l ) * d x  

where the sum is a trapezoidal-rule sum over - *A7 to #N.  It should be remembered 
that the physical variables have been non-dimensionalized with respect to gravity, 
and to a depth scale h. 

2.5.3. Kinetic energy of $uid motion. It can be shown using Green’s theorem that 
the kinetic energy per unit length normal to the flow is 

where (a,  n)  are local co-ordinates, respectively tangential and outwards normal to the 
local boundary, ds is always taken to be positive, and the path of integration is the boun- 
dary of the computational region defined by ABCDA. Here AB is the horizontal bot- 
tom y = 0, -4L < x < 4L; BC is the right-hand boundary x = &L, 0 Q y Q q(QL, t ) ;  
DC is the free surface y = q(x, t ) ,  - 4L < x Q 4L; and AD is the left-hand boundary 
x = - *L, 0 < y < q( - 4L, t ) .  The normal velocity a$/an is zero on the bottom AB, 
so that there is no contribution to T from that boundary. This holds for any stationary 
solid boundary AB. The contributions from the other boundaries will be considered 
individually. Boundary BC gives a contribution 

and boundary AD gives 

where the negative sign occurs because a/an = - a / a x  on this left-hand boundary. 
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Periodicity of the motion, q( - $L, t )  = q(QL, t ) ,  $($L, y, t )  = $( - +L, y, t )  + U L ,  and 
a$(+L, y, t) /ax = a$( - $L, y, t) /ax,  can be used to give 

If the expression for a$/ax given by ( 1  1)  is substituted into (26) the integral can be 
evaluated analytically to  give 

(27) 
i sinhjky(BL, t ) )  

T’c+T’D = t p o L ( C T q ( Q L , t ) - - - ~ j ( t )  N i  coshjED ‘ 

This involves only quantities already evaluated during the course of solution. 
The contribution from the free surface DC is 

(28) 
a$ C 

TDC = $ P I D  $(x, q(x,  t ) ,  t ,  (x, q(%, t ) ,  t ,  

Along the free surface, ds = dx( 1 t qi)*, and 

_ -  a$ P$).W) 
an - lVGl ’ 

where G(x,  y, t )  = y - q(x ,  t ) ,  and V is the two-dimensional gradient operator, so that 

so (28) may be written as the relatively simple integral in x: 

The integrand of (29) is not necessarily periodic but, if i t  is rewritten as in (30), the 
first integral has a periodic integrand and can be accurately evaluated with the 
trapezoidal rule. During the numerical time-stepping described in $2.3 it is now 
necessary to evaluate $ on the surface at  each time step. This can be done efficiently 
a t  the same time that 9, and $v on the surface are calculated. The aq/at comes from 
(15)) evaluated during the course of the calculations. In (30) the second integral can 
be integrated by parts; however, to do this Fourier methods can again be implemented. 
Transforming the values of aq(x,, t)/at obtained from (15) gives the Fourier coeffi- 
cients BI : 

J 

and so the interpolating series becomes 

2 ( x , t )  = -+- Bo 1 Bjexp(-ijkx). 
at N N j  

J*O 

The second integral in (30) may now be evaluated to give 

B .  
( -  1 ) i L .  

ipUL2 

4 r N  j j 
i*O 
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Hence, with the trapezoidal evaluation of the first integral in (30), the total kinetic 
energy, which incorporates (27), is given by 

where the Bj are obtained from (31). 
The constancy of the total energy T + V was found to be a demanding criterion, and 

hence helpful in program development. This was largely because the kinetic energy 
contains integrals of @/at, so that if is accruing error this measures the rate, whereas 
the mean depth takes some time before errors are accumulated. 

As a test of the accuracy of the method presented in ss2.2 and 2.3, a symmetric 
progressive wave of height 35 % of its mean depth and wavelength 10 times the depth 
was monitored for one wave period using the integral checks derived above. The initial 
solution was obtained from the Fourier method in Rienecker & Fenton (1981). With 
N = 16, over one wave period the total energy was conserved to within 0-003 yo and 
total mass to within 0.002 yo. 

3. Interactions of solitary waves 
3.1. Application of the Fourier method 

It was not possible to model the problem of solitary-wave interactions exactly because 
a finite computational length L was necessary. As an approximation, waves of a long 
but finite length were used. The initial conditions were taken to be two waves placed 
adjacent to each other so that the common trough depths were the same and the fluid 
velocities under the troughs also the same. These waves were a.ssumed to be of a form 
such that, if the other interaction wave were not present, each would progress steadily 
without change of form. Accurate solutions for these were obtained using the Fourier 
method of Rienecker & Fenton (1981), after which values of y(x,, 0 )  and $(xm, D,  0)  
for both waves combined were obtained by Fourier interpolation. Because of the 
implied periodicity, the problem of one wave ( A )  moving relative to another (B) ,  was 
modelled by ... ABABABABA ..., an infinite train of A B  interactions. The waves 
were chosen long enough so that this did not affect their interaction, as verified by 
preliminary numerical tests; that each wave closely approximated a solitary wave was 
justified by comparing phase speeds and integral quantities with those given by 
Fenton (1972). 

The time-stepping method needs two sets of initial conditions, at  time zero and at  
one step 4 t  later. These were obtained by allowing each wave of the above initial 
solution to travel a distance c4t, where c is its wavespeed in a frame of reference such 
that the fluid velocity under the common trough is zero. Then, by assuming each wave 
to be still unaffected by the other, the y(x,,At) and $(xm,D,4t)  were obtained by 
Fourier interpolation. The time-stepping could then be started. 
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It should be noted that the case of long-wave interactions is a particularly demand- 
ing test of the Fourier method. This is because the Fourier coefficients for long waves 
show a much wider spectrum than for shorter waves. A long wave is essentially a single 
hump on otherwise undisturbed fluid: to model this by Fourier series requires many 
more terms in the series than a wave in deep water, which more closely resembles a 
sine wave. Accordingly, for long waves larger values of N are necessary, and because 
the solution of the set of linear equations at each step involves a process proportional 
to  N 3 ,  much more computer effort is necessary. 

3.2. One solitary wave overtaking another 
3.2.1. Computational details. In  this case the waves move slowly relative to one 

another, the interaction time is long, and so is the computational time necessary to 
simulate the physical situation. After some trial and error it was found that N = 64 was 
necessary to solve this problem accurately, and a single time step took 5.3s on the 
Cyber 171 computer at the University of New South Wales. A typical solitary-wave- 
interaction problem was estimated to  take some 8 h of computer time, which wits 
considered too long to examine a number of different interactions. One interaction 
only was studied, the results of which justify the application of approximate theory, 
rendering further accurate numerical studies rather superfluous. 

The two waves used were a wave of height 30 yo of its mean depth and a wavelength 
of about 15 times the depth joined to a wave of height 10 yo of its mean depth and a 
wavelength of about 20 times the depth. As described in $3.1 , the waves were joined 
together at the trough. The length scale used in this paper is the depth h under this 
common trough of the two waves, corresponding to the undisturbed depth of water 
far from a solitary wave. The heights of the two ‘solitary’ waves using this length 
scale were 

high wave height = ea = 0.3252, 

low wave height = eB = 0.1035, 

with wave-height ratio = = 3.142, 

so that solutions of the weakly nonlinear Korteweg-de Vries equation, as obtained by 
Hirota (1971), predict a class ( c )  interaction, that is at the centre of the interaction 
there is only one crest (see Weidman & Maxworthy (1978) for a description of the three 
classes (a), (b )  and ( c ) ) .  As described above, N = 64 was used, while the computational 
wavelength L / h  = 37.4, so that Ax/h = 0.584 - about half the depth, and a rather 
coarse grid spacing by finite-difference standards. The dimensionless time step At 
(= At(g/h)* in dimensional terms) was 0.052, about of the time taken for a solitary 
wave to traverse a distance equal to the water depth. Choice of such a small time step 
was dictated by considerations of accuracy rather than stability. The total number 
of time steps taken, for the interaction and for the waves to be far enough apart 
afterwards for the interaction to be considered complete was 5700, in which time the 
high crest travelled a total distance of about 340, that is about 9 times through the 
computational wavelength. 

3.2.2. Description of the interaction. The interaction is shown in figures 1 and 2. In 
figure 1 each continuous curve shows the surface at an instant in time, the next curve 
behind i t  corresponds to another later time. The figure is plotted from the point of 
view of an observer moving at the initial speed of the lower wave. Initially, neither of 
the separate humps senses the presence of the other; however, they gradually merge 
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FIQURE 1. Overtaking solitary-wave interaction as viewed by an observer travelling at  the 
initial speed of the lower wave. Initial wave heights are 0,3252 and 0,1035 of the undisturbed 
depth. 

100 

-100 

-10 0 
Crest position 

10 

FIGURE 2. Crest trajectories of the waves, relative to an observer initially located at the crest 
of the slow wave and continuing to move with that crest speed even after interaction. The dis- 
appearance of that crest, its subsequent reappearance in the same position, this time as a fast 
crest, and the apparent phaae shift of the crests can be identified. 

until at the centre of the interaction the wave is a single mount whose crest region 
looks quite flat. Close examination of the figure shows that just before (and just after) 
the centre of the interaction there is only one crest (local maximum of elevation), but 
that, at the interaction centre, there is a slight trough between two crests. It is clear 
that, unlike predictions from the Korteweg-de Vries equation, this interaction is 
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actually of type (b ) .  In this case the higher wave passes its substance to the other one 
so that two distinct wave masses can always be identified, even though there is 
actually only one crest at certain stages ofthe interaction. Figure 2 shows the existence 
and position of crests at different times, with position plotted horizontally (relative 
to a moving co-ordinate system in which the original lower wave is stationary), and 
time plotted vertically. At any time, intersection of the curves with a horizontal line 
gives the position of crests. The interaction will now be described in some detail, as 
illustrated by these figures. 

It is not until the crests are close together that any significant interaction occurs. 
When this occurs fluid flows from the high wave to the intermediate trough and into 
the other lower wave while their relative positions are essentially maintained. A t  a 
certain stage the trough has been filled so that, while one crest has disappeared, clearly 
there is an identifiable mass of liquid roughly where that crest has been. The higher 
crest continues to drop as fluid is extracted from it and passed forward until enough 
has changed position that a crest reappears where the lower crest was. Now there are 
two crests separated by a finite distance, but with one continuing to grow at the 
expense of the other until the system is symmetrical with two equal crests and a barely 
discernible trough between them. Whereas the initial crest elevations of the two waves 
were 1.3252 and 1.1035, both crests (separated by distance 2.946 - three times the 
undisturbed depth) now have a height of only 1.2096, while the trough has elevation 
1.2053. When plotted on Weidman & Maxworthy’s figures for the geometry of the 
waves at the centre of interaction, these numbers show consistent agreement with the 
experimental results. A n  important feature of the interaction is that the maximum 
elevation at the interaction centre is considerably less than that of the highest incident 
wave, and the crests are widely separated so that the interaction occurs with relatively 
low heights and accordingly relatively weak nonlinearities and interactions so that it 
should be capable of description by the Korteweg-de Vries equation. A qualitative 
difference between the solutions of that equation and the present results is in the type 
of interaction (types (c)  and ( b )  respectively). If, however, the trough shown in figure 1 
contained slightly more fluid, then instead of crest-trough-crest, a single crest would 
be seen and the interaction would be classified as being of type ( c ) .  It does seem that 
there is no important difference between the interactions of types (a ) ,  ( b )  and (c ) ,  
which are illustrated in Weidman & Maxworthy (1978). In each case the faster rear 
wave passes its form to the slower front wave by a similar process. The classification 
into different types of interaction, based on phenomena of crest behaviour, seems to 
have little to do with the real nature of the interaction. 

3.2.3. Post-interaction behaviour. Events after the waves reach equal height are very 
nearly the reverse of what happened before (while KdV theory predicts precisely the 
reverse). The forward wave continues to grow at the expense of the rear wave until it 
acquires substantially the characteristics of the initial rear wave; it is then higher and 
faster, and accordingly moves off. The rear wave temporarily loses its crest just as the 
front wave momentarily lost its crest, until the waves are sufficiently separate, after 
which the rear wave propagates independently as the small and slow wave. After 
interaction the crest elevations are 1.3288 & 1 and 1.1017 & 2. Thus the high wave has 
grown by 0.0036 (1.1 % of the wave height), while the low wave has decreased by 
0.0018 (1.7 %). These small deviations from the theory, which predicts no change, 
show that the front wave is even more parasitic in its effect than a simple exchange of 
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Energy 

Kinetic Potential Total 

Before interaction 0.19363 0.17510 0.36873 
Centre of interaction 0.19204 0.17667 0.36871 
After interaction 0.19365 0.17509 0.36874 

7 A- --- r 

Change during interaction + 0*00002 - 0*00001 + 0~00001 

TABLE 1. Partition of energy at various stages of the overtaking interaction 
between two solitary waves 

identity, for it leaves the interaction higher than the wave which comes in. The high- 
wave crest is now travelling faster than the incoming' wave, which is in keeping with 
an estimate from solitary-wave theory. Similarly, the observed speed reduction of the 
lower wave is in qualitative agreement with a theoretical estimate. The results do seem 
to show that after the interaction two waves emerge which are very close to being 
solitary waves of translation, but that the higher wave has grown higher at the 
expense of the lower wave. 

Figure 2 also shows the only finite feature of the interaction predicted by KdV 
theory - the phase shift forward of the high wave relative to where it would have been 
at  the same time if it had not encountered a lower wave, and a similar phase shift 
backwards for the lower wave. The waves after interaction are travelling at different 
speeds, so that the value of the phase shift depends upon where it is measured. To avoid 
ambiguity this was done by fitting straight lines to the data on figure 2, far away from 
the interaction, projecting these to the interaction region, and then by measuring the 
horizontal displacements at the interaction centre ( t  = 0). Results are: 

phase shift of the high wave 3.152 (KdV: 2.587); 

phase shift of the low wave - 3.792 (KdV: - 4.586). 

The experimental results of Weidman & Maxworthy agree with the general trend 
of the theoretical results, but with deviations of similar magnitude as found above. 

Another item of interest is the shape of the free surface at  the very rear of the two 
waves after interaction. Bona, Pritchard & Scott (1980) obtained numerical solutions 
of Peregrine's nonlinear long-wave equation and found a small trailing oscillatory 
wave train behind the rear wave which is not obtained from solutions of the KdV 
equation. The present work showed no trace of trailing waves, either from plots of the 
free surface or, more convincingly, by second differences of the point values of the 
surface elevation. 

3.2.4. Check on accuracy: energy partition. The partition of energy is given in table 
1.  It can be seen that after 5700 time steps the total energy was conserved to high 
accuracy. In that time the mean depth changed by 1 part in 107. Considering the 
partition of energy before, during and after the interaction, it can be seen that changes 
in the system are very small indeed. Even at  the centre of the interaction the energy 
partition is little different from the initial &ate: the interaction seems to be very 
weak. 

3.2.5. Physical discussion of solitary-wave overtaking. In the above numerical solu- 
tion of one solitary-wave overtaking interaction both major assumptions of the 
Korteweg-de Vries theory were found to be justified -that is, the wave motion during 
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interaction and at all other times was both long and low. Thus the motion was indeed 
weakly nonlinear, and the waves after interaction were little altered. 

Examination of the experimental results of Weidman & Maxworthy show that 
mid-interaction heights are always considerably less than the height of the largest 
wave. Thus, in all cases of solitary-wave overtaking it seems that there is a nonlinear 
process by which fluid is transferred forward so that the front lower wave acts para- 
sitically on the rear higher wave. The interaction time is long, so that enough fluid is 
moved before the main bodies of the waves coincide, and at no stage does the interac- 
tion resemble a linear superposition of the two incident waves. For small differences 
in the incident-wave heights this is markedly so and the two waves never coincide, 
while for large height differences there is apparent coalescence of the two waves but 
the high wave is greatly diffused by the fluid transfer. In  no case does the rear wave 
seem to propagate through the front wave. Rather, it appears that the process involves 
an exchange of identity through the transference of fluid. Thus for waves which are 
not very different a relatively small amount has to be transferred, so that this can be 
done without the waves merging very much. On the other hand, for large differences 
in height, speed and mass, and hence in the mass to be transferred, the waves are able 
almost to coalesce before the redistribution is complete. 

This description provides a physical explanation for the phase shift of the two crests. 
Figures 1 and 2 show most clearly that the fast wave crest after interaction appeared 
just where the slow wave crest disappeared, and vice versa. It does seem that the wave 
at the front maintained its position relative to the rear wave throughout the inter- 
action, until it grew sufficiently for the crest to exist and subsequently to travel away. 
Thus if the fast wave does not have to travel through the whole interaction region, but 
reappears some distance forward because fluid has flowed into the front wave, the 
finite forward phase shift is explained. For the small wave the argument can be 
repeated in reverse to explain the backwards shift. While this process is easy to see in 
the interactions of type (a ) ,  where there are always two crests, it is not so obvious for 
interactions where a crest may temporarily disappear. Nevertheless, the fact that the 
phase shift is finite for all physically realizable overtaking interactions is a strong 
indication that the above argument holds for all. 

3.3. Interaction of diSferent waves travelling in opposite directions 

Although the overtaking interaction has been termed ‘strong’ in a scattering-theory 
context, in the study described above it was found to be weak even though the 
behaviour of the interaction was essentially nonlinear. For comparison purposes the 
Fourier method was applied to the same two waves as in $3.2, but propagating in 
opposite directions -the so-called weak-interaction case. Results are given in figure 3 
and in table 2, which summarizes those from the overtaking interaction as well. The 
interactions were of a quite different nature. In  this case, as the waves came together, 
the crests collided and the single combined crest grew to an amplitude greater than the 
sum of the amplitudes of the incident waves and then subsided again as the waves 
emerged from each other. It was apparent that the waves had passed through each 
other, as shown in figure 3, rather than one wave acquiring the characteristics of the 
other as in the overtaking situation. 

The high wave was more affected in this case - its amplitude was reduced by 0.0048 
(1.5 %), 14 times the amount by which this wave grew in the overtaking case. A slightly 
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FIUURE 3. Interaction between two solitary waves of the same heights as those in figure 1 ,  but 
travelling in opposite directions. 

High wave 
initial crest elevation 
finel crest elevation 
change 

Low wave 
initial crest elevation 
final crest elevation 
change 

Maximum water-surface elevation a t  centre of interaction 
Relative speed of wave crests 

high wave 
low wave 

Spatial phase shift { 
Initial 

Final 
Change (final -initial) 

Energy proportion which is Centre of interaction 
potential energy 

Overtaking 
waves 

1.3252 
1.3288 

+ 0.0036 

1.1035 
1.1017 

-0-0018 
1.2096 
0.1033 
3.152 

- 3.792 
47-49 yo 

- 001 yo 

47-91 yo 
47.48 Yo 

Colliding 
waves 

1.3252 
1.3204 

- 0.0048 

1-1035 
1.1021 

-0.0014 
1-4494 
2-2100 

- 0.446 
-0.515 
47.49 yo 

+ 0-02 yo 

82.19 yo 
47.51 yo 

TABLE 2. Interaction between two solitary waves of height 0.3252 and 0.1035, comparing the 
two cmes of (a) travelling in the same direction (overtaking) and ( b )  in opposite directions 
(colliding) 

puzzling result is that the low wave was also reduced, but not as much as for the 
overtaking case. Energy and mass were conserved to very high accuracy during the 
300 time steps used for this calculation. During the interaction the potential energy 
rose to as much as 82 % of the total, showing the effect of the waves colliding and the 
fluid being stilled as the crest rose up. 

As the maximum surface elevation at the centre of the collision was 1.4494, the 
interaction, however brief, was highly nonlinear and in this case it is not surprising 
that the predictions of low-order theory - that waves pass without change except for 
a negative phase shift - are not so accurate. 
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Comparing the two sets of results in table 2, for example the change in the wave 
heights after interaction, it can be seen that the overtaking and colliding interactions 
have an effect on the waves of comparable magnitude. Hence it seems misleading to 
continue to describe the collision interaction as ‘weak’ relative to the overtaking 
interaction, for the brief but dramatic interaction of the former has an effect com- 
parable to or greater than the long and low interaction of the latter. Therefore it is 
recommended that the previous appellations of ‘ weak ’ and ‘ strong ’ be discontinued. 

In  examining the colliding interaction, the third-order perturbation solution of 
Su & Mirie (1980) showed that each wave profile after collision was distorted because 
of different values of the phase shift at different points of the wave. The profile tilted 
backwards from the direction of propagation, but had amplitude unchanged from that 
before collision and travelled at  the same speed. Each unsymmetric wave shed 
secondary waves which propagated in the opposite direction to the main wave but 
with diminishing amplitude due to dispersion. The theory predicts that the maximum 
surface elevation during collision would be 1.4509, comparing closely with the present 
result 1.4494. The phase shifts of the crests predicted by the theory are not as accurate. 
The third-order expression (55) of Su & Mirie gives post-interaction shifts of - 0.441 
and - 0.362 for the low and high waves respectively, whereas the present numerical 
solution of the full equations gives corresponding shifts of - 0.515 and - 0.446. 

The Fourier-method results also differed from those of the third-order theory in 
that the amplitudes after collision were diminished and the waves were travelling 
slightly faster. No secondary waves were discernible (see figure 3) for the interaction 
described above. For the case of colliding waves of equal height, discussed in $3.4, 
a significant secondary wave appeared only for initial wave heights greater than 0.3. 
Unfortunately, the long-time behaviour of the waves emerging from one collision 
cannot be examined by the method of $2, because of spatial periodicity. For higher 
waves than those considered here, the interaction will be even stronger. This was 
investigated by applying the numerical method to colliding waves of equal heights. 

3.4. Colliding waves of equal heights - solitary wave incident on a vertical wall 

3.4.1. Computational details. If two solitary waves of the same height propagate in 
opposite directions, passing through each other, then by symmetry the horizontal 
velocity at the centre of interaction is zero. Within the irrotational approximation 
then, this is the same problem as the reflection of a solitary wave by avertical wall, and 
henceforth will be described in terms of the latter. To study this problem the same 
techniques were used as in 9 3.2.  For a typical long wave of a given height, preliminary 
runs were made for various wavelengths until the interaction results were essentially 
independent of wavelength, when it was assumed that the wave was sufficiently close 
to being a solitary wave. For each wave, the speed of the crest was shown to agree very 
closely with the theoretical solitary-wave speed for a wave of that height, obtained 
from the high-order expansion for wave speed given by Fenton (1972), providing an 
additional check. These are shown in table 3. In  the calculations N = 32 was used, and 
a typical number of 300 time steps were necessary to describe the propagation of a 
wave from its initial position far from the wall, its reflection, and its propagation back 
to that position. This required about 5 minutes of computer time. 

3.4.2. Description of the motion. A typical reflection is shown in figure 4, for a wave 
of height 0.3252 of the undisturbed water depth. Initially the wave propagated without 
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Reflected wave - 

FIQURE 4. Interaction between a solitary wave of height 0,3252 and a vertical wall, or one-half 
of the situation of two such waves travelling in opposite directions. 

change towards the wall (on the left-hand side of the figure), suggesting that it was 
indeed behaving like a solitary wave. The first surface profile shows an interesting 
feature of the computation, because the computer plot has joined points of known 
elevation with straight lines, so that the spacing of computational points relative to 
radii of curvature of the wave can be compared. The spacing is large enough that 
finite-difference approximation would be sorely tried, whereas the Fourier-interpola- 
tion method gave very accurate results. At  the wall the water level slowly rose until 
it was almost as high as the crest, with the crest almost unaffected. As the intermediate 
trough filled, the crest ‘snapped through’ to the wall, in the same sense as for over- 
taking waves when a small transfer of fluid had a large effect on the crest. The crest at 
the wall then reared up to more than twice the height of the incident wave, while far 
from the wall the fluid was undisturbed. At its highest elevation, the crest at the wall 
became rather more curved. For the highest waves it became quite sharp. In this limit, 
the highest waves at  the wall, the use of the present method becomes questionable. 
The sharp crest cannot be so accurately described by the Fourier series, whose accuracy 
depends on functions and derivatives having no discontinuities. Whereas a real wave, 
if sufficiently high, may show breaking (and possibly overturning) at the crest, the 
numerical waves were rounded by the describing trigonometric functions, and the 
present method could provide no breaking criterion. As will be shown below, the 
method still gave results agreeing closely with experiment. 

After reaching the maximum height, the process was qualitatively reversed. The 
reflected wave was not the same as the incident wave, however, because of the non- 
linear interactions. Differences will be described later ; meanwhile numerical results 
for the problem as a whole are presented here. 
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ncident wave height e 0-1035 0.1566 0,2134 0.2690 0,3252 0.3890 0.4554 0-5161 
!hang0 in mean depth - 0.2 x lo-* 0.2 x lo-' 0.1 x 0.3 x lo-' 0.2 x 10-8 0.1 x 1' 
accuracy check 
peed of crest before 1.0481 1.0750 1.0974 1.1262 1.1486 1.1731 1.1970 1.2158 
interaction 
'heoretical solitary- 1.0502 1.0748 1.1003 1.1244 1.1480 1-1737 1.1990 1.2216 
wave speed 
[aximum elevation of 1.2132 1.3278 1.4564 1.5866 1.7262 1.8993 2.107 2.303 
crest et wall 7, 
[aximum force on 0.719 0.839 0.964 1.084 1.198 1.312 1.431 1.567 
wall P, 
[aximum moment 0.290 0.369 0.461 0.859 0.662 0.774 0.888 1-007 
tLbout base M ,  
boreme in crest 0.0006 0.0018 0.0042 0.0081 0.0138 0.0246 - - 
alevation AT 
ncrease in crest speed 0.002 k 1 0.006 k 1 0.008 & 2 0.012 0.024 0.036 - - 
A C  
'hase lag at wall AT 0.25 k 2 0.36 & 1 0.40 & 1 0.50 & 1 0-61 0.73 1.12 - 

0.3 x 0.2 x 

TABLE 3. Results for the reflection of solitary waves of various heights by a vertical wall 

1.2 

vm-l 0.8 

0.4 

0 0.2 0.4 0.6 
E 

FIGURE 6. Maximum height of the crest at the wall above undisturbed depth, 7,- 1, and its 
variation with incident wave height 6. e, Numerical results from present method; - third- 
order results of Su & Mirie (1 980) and a close approximation to the numerical and experimental 
results reported by Chan & Street (1970) ; - - - - , mean of experimental results from wave- 
wall reflection; - -, wave-wave interaction, both from Maxworthy (1976). - --, second- 
order theory from Byatt-Smith (1971). 

3.4.3. Results. Table 3 contains the results for the reflection of a solitary wave by 
a vertical wall, which is essentially a one-parameter problem in the incident wave 
height. Results from this will now be considered in detail. The change in mean depth 
during the course of the calculations is shown for each wave height. It can be seen that 
the results are very accurate, except for the higher waves, whose crests became quite 
sharp when they struck the wall. Up to this point all solutions were very accurate, 
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conserving mass to four places, so that figures for maximum run-up, force and moment 
should be reliable. After the development of the sharp crest the solutions were less 
accurate, so that no results are presented for post-interaction quantities for the 
highest waves. 

Maximum run-up at the wall. In figure 5 the maximum height of the crest above 
undisturbed depth, qm - 1, is plotted against the incident wave height E .  Results from 
the present work are shown by the solid circles, which lie almost exactly on the solid 
line qm-1 = 2 ~ + & ~ + & 9 ,  the third-order result obtained by Su & Mirie (1980), 
which they showed agreed well with both the experimental and numerical results of 
Chan & Street (1970), even for the highest waves studied. It is perhaps surprising that 
the third-order theory describes this quantity so very accurately, while to describe 
the steadily progressing solitary wave accurately high-order theories a.re necessary. 
Maxworthy (1976) mentioned several experimental difficulties in obtaining results 
for the maximum run-up. His results are represented by the two dashed lines - the 
upper one having been obtained from experiments in which two oppositely directed 
solitary waves were generated, while the lower short-dashed line was obtained from 
single waves against a vertical wall. 

The maximum force exerted on the wall and its moment about the base were 
calculated by integrating the pressure on the wall, obtained from the pressure equation 
at 21 equally spaced points between the bottom and the crest, using Simpson’s rule. 
Results are given in table 3. Parabolas were fitted to these results in a least-squares 
sense, but requiring that the hydrostatic results for zero amplitude be recovered. 
These empirical results are 

F, = force per unit length of wall/pgh2 = 3 + 2.2% - 0 . 4 2 ~ ~ ;  

Mm = moment about base per unit length of wall/pghs = 8 + 1-23s + 0 . 8 0 ~ ~ .  

As the solitary wave is the fastest, most massive, and has the greatest impulse of ail 
waves of a given height, these results should provide convenient design criteria for 
vertical walls subject to wave impact. 

Changes in the wave after rejlection. There have been some conflicting reports con- 
cerning the shape of the wave after reflection. Byatt-Smith (1971) showed that, to 
second-order in wave height, the wave is unchanged. Su & Mirie (1980) obtained the 
third-order terms describing the interaction which contained the result that the wave 
height is unchanged after interaction, but that a third-order asymmetry about the 
crest is introduced, part of which subsequently appears as a dispersive trailing wave 
train. In  their numerical solution of the full nonlinear equations Chan & Street (1970) 
claimed that the wave was unchanged after reflection; however, Maxworthy ( 1976) 
noted from his experiments that ‘the reflected wave assumes a shape that is clearly 
steeper than that of the incoming wave and is . . . moving slightly faster’. 

A typical result from the present study is given in figure 6, which shows two wave 
profiles - a wave of moderate height (0.3252) before interaction, and the reflected 
wave when its crest was passing through the centre of the computational region. The 
wave was markedly different after reflection - a.n appreciable quantity of fluid had 
shifted its position, the crest was lower, the main body of the wave was wider but still 
almost symmetrical, and there was a finite trough behind it. As the wave propagated 
it was changing slowly with time; however, the present numerical method cannot be 
used to study the long-term evolution. The rate of change of the main wave was very 
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FIGURE 6. Comparison of surface profiles for an incident wave (--) of height 0.3252 of the 
undisturbed water depth, and the same wave (----) after reflection. Vertical distortion 
16: 1. 

0 0.2 0.4 
E 

FIUURE 7.  Decrease in crest elevation AT after the wave has returned to its original position. 
Numerical results from present work shown as solid circles. For comparison, the curve 0 . 4 ~ ~  
is shown. 

small, and it propagated with sufficiently constant crest elevation, so that the decrease 
in crest elevation AT between incident and reflected waves could be measured and 
used as an indication of the change in the wave form. Values of AT for the waves 
studied are given in table 3, and in figure 7 are plotted against incident wave height. 
Assuming AT = acn, where a and n are constants, a least-squares fit to  the points gave 
a = 0.41 and, more importantly, n = 2.78, indicating strongly that changes in the 
wave height (and profile) are of third order. The curve Ar, = 0.4e3, approximating the 
least-squares fit, is plotted on figure 7, and can be seen to describe the results quite 
closely. This would seem to throw some doubts on the results of Su & Mirie, in which 
no change in the crest elevation at third order is predicted. 

In  view of the fact that the high and fast wave in the overtaking interaction became 
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E 

FIGURE 8. Increase in crest speed Ac after interaction. Numerical results shown as solid circles. 
The arbitrary curve 0 . 6 4 ~ ~  is shown as --. 

higher and faster, and the lower and slower wave became even more so, the result that 
the waves after reflection by the wall (as shown by the results for h e  in table 3) were 
faster as well as lower seems rather surprising. Nevertheless, this was consistently 
obtained for all wave heights, and has been noted experimentally by Maxworthy. As 
all nonlinear steady-wave theories predict increasing wave speed with height for 
moderate heights, it seems that the reflected waves were not proper steady waves of 
translation (solitary waves in the long-wavelength limit). ‘It is possible that the trailing 
trough (figure 6) plays a role in increasing the effective height and hence speed; how- 
ever, for lower waves no local minima after reflection were found, yet they also 
travelled faster. Results for the increase in wave speed are plotted on figure 8. As 
numerical differentiation has been used to obtain the speeds from crest, position data, 
and the actual change in speed is small, the results are less consistent than for the 
decrease in height, especially for lower waves. Nevertheless, a cubic curve gives a 
reasonable approximation, as shown on the figure. Although this increase in wave 
speed is small, i t  has important implications for the experimental measurement of 
phase changes, as described below. 

Phase change during interaction. The change of phase of a solitary wave being 
reflected by a wall is shown by the idealized and exaggerated wave-crest trajectories 
on figure 9. A solitary-wave crest is travelling from right to left, with a wall a t  x == 0. 
Initially the wave does not sense the wall and travels a t  constant speed (at A on the 
diagram); however, there is a marked increase in crest speed as the body of the wave 
nears the wall and the region between crest and wall fills with fluid with the result 
that the crest ‘snaps through’ to the wall, arriving at  B. The crest moves up the wall 
until it reaches a maximum, then down again until it leaves the wall a t  C and travels 
in the opposite direction. Conventionally, the phase change has been considered to be 
a displacement in x - the difference in location between the actual wave crest and the 
crest of a wave which is supposed reflected instantaneously with no change in speed 
so that its trajectory is A E F .  Thus the phase change has been defined to  be the 
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FIQURE 9. Exaggerated and schematized diagram showing crest trajectories for reflection of a 
solitary wave by a wall at  z = 0. The actual wave crest follows the curves AB, BC, C D .  If the 
wave were unaffected by the wall except for an instantaneous reflection, the crest trajectory 
would be AEF.  The usual definition of phase lag is the horizontal distance between the lines 
GD and E F ;  however, because they are not parallel (wave speed changed by the interaction) 
the phaae shift depends on where it is measured. In the present work, the apparent time lag 
EG at the wall is taken to be the phase shift. 

horizontal displacement of the line GD from EF.  If the slope of GD is different from 
the slope of EF,  this displacement varies with measuring location. 

The second-order theory of Oikawa & Yajima (1973) predicts that the crest travels 
at the same speed as before collision but is delayed at the wall so that the reflected 
crest trajectory is parallel to EF. Hence there is a uniform phase shift independent of 
measuring location, AX = (&)*. 

Su & Mirie (1980) studied such interactions to third order, finding the phase change 
to be a very slowly varying function of 2. Immediately the reflected wave first begins 
to travel unaffected by the presence of the wall the phase change of the crest may be 
expressed as AX = (+s)*(l+4&) (from their equation (55)). The crest is travelling 
faster than the hypothetical perfectly reflected wave, but with changing speed as the 
wave evolves in time; hence the phase shift is dependent on measuring location. The 
wave speed asymptotes to the incident wave speed, and it is only this long-time 
evolved wave travelling at constant speed which displays a uniform phase shift of 
AX = (Qs)i (1  + &), independent of measuring location. 

Experimental measurements of the post-interaction phase shifts have been made 
(Maxworthy 1976) and show the unexplained result that the phase shift is independent 
of wave height, in apparent contradiction to the expression given by Su & Mirie. These 
experiments and the numerical results of the present work indicate that the reflected 
wave travels faster than the incident wave, and so the phase shift must depend on 
measuring location. The numerical results as plotted on figure 10 may explain the 
apparent experimental insensitivity to E. The ordinate AX is the measured phase lag, 
plotted against incident wave height E, and where the parameter x pertaining to a set 
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FIGURE 10. Results from the present work for spatial phase lag AX as a function of wave height 
E and z, distance of measuring station from the wall. Maxworthy's results are in the hatched 
region, showing wide scatter about an apparent constant value of AX N 1.2. Results from the 
present work are shown by points, the solid lines are curves fitted to these points, each curve 
corresponding to constant z. The dashed lines are from theory: --, second-order; 
--- , third-order immediate post-interaction; - - - -, third-order long-term. 

of points and solid line is the distance from the wall at which the lag was measured. 
Clearly the location of the measuring station is important. For a station distant some 
15-20 times the water depth, not so far in solitary-wave terms, the figure shows that 
the measured phase shift is relatively independent of wave height. In performing 
difficult physical experiments such as these, the small variation with height at, say, 
2 = 20 would be swamped by experimental scatter. This may explain the observed 
results of Maxworthy, which are in the hatched region on figure 10, with a large scatter 
about an apparent constant value of AX 21 1.2. What remains to be explained is why 
his results are some three to  four times greater than the present numerical results. It 
should be noted, however, that two previous presentations of the theoretical results 
for the case of a wave against a wall have plotted 2AX rather than AX. This seems 
to have originated with Maxworthy (1976) in his figure 3. Comparison with his figure 
2 shows that he has plotted experimental results for AX and theoretical results for 
2AX. This was repeated by Su & Mirie (1980) in their figure 3. 

These theoretical results are also plotted on figure 10, which contains the second- 
order theoretical result AX = (&)* obtained by Oikawa & Yajima (1973), and the 
third-order results AX = (&)* (1  + y e )  for the immediate post-intera.ction stage, and 
AX = (a€)* (1 + ge) for the long-term shift, both obtained by Su & Mirie (1980). It 
should be noted that the evolution from one to the other takes place on a very much 
greater length scale than the changes in the phase shift due to the different crest speed 
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FIGURE 11. Time phase lag a t  the wall. , measured in the present work; - - , seoond- 
order theory; - - - , third-order immediate post-interxction; - - - - , third-order long- 
term. 

as contained in the numerical results. From the figure it can be seen that these results 
are seeming to asymptote to the theoretical results; however, for moderate amplitudes 
the relatively low-order theory is not very accurate. 

In  view of the strong dependence of the phase lag on the measurement location, to  
give a unique value of phase change for a given incident wave height a definite position 
must be specified, for which the only unambiguous possibility is at the wall, x = 0. As 
the wave does not actually travel through the wall, rather than specifying a phase 
change as a spatial displacement i t  seems more reasonable to measure the phase lag 
in time AT ( =time phase lag x (g /h)*  in physical terms), a quantity expressing how 
much longer the wave remained against the wall than if it had been instantaneously 
reflected. Thus, the measured phase lags given in table 3 correspond to the time dis- 
placement EG on figure 9, and are plotted on figure 11.  To obtain E and G for each 
wave, straight lines were fitted to a number of data points in the vicinity of A and of 
D,  using a least-squares method, and these were extrapolated to x = 0. As low waves 
are longer, so that A and D must be taken further away, the extrapolation becomes 
questionable in this limit even for the present idealized and accurate numerical solu- 
tion. Maxworthy (1976) also reported difficulties in measuring the phase shifts 
accurately for small waves. 

Also plotted on figure 11,  with the same convention as figure 10, are the second- and 
third-order theoretical results, obtainedfrom Su & Mirie’s expression for A X ,  divided by 
the wave speed c = 1 + &e + . . ., to give the phase lag A T :  AT = (+a)* ( 1  + y e  + O(e2) )  
for the immediate post-interaction stage and AT = (+E)* ( 1  + #e + O(e2)) for the 
long term. It can be seen that the numerical results seem to asymptote to  the former 
for small e, but that for waves of moderate height (when the numerical extrapolation 
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FIGURE 12. Envelopes to line spectra of the Fourier coefficients of the surface elevation, at 
different stages of the interaction of a solitary wave of height 0.2134 with a wall. t = 0 is the 
initial state, t = t, when the crest at the wall has reached its highest elevation, t = 2t, when 
the crest is back in its original position. 

described above was quite accurate) the theory substantially underestimates the 
phase lag. 

3.4.4. The nature of the interaction. To investigate the interaction in more detail, 
some more results were obtained for the case of a solitary wave of height 0.2134 being 
reflected by a wall, with N = 48. The magnitudes of the Fourier components of the 
surface elevation 15 ( t )  I are shown by the envelopes to the line spectra, plotted on 
figure 12. At t = 0, when the wave was in the centre of the computational region and 
unaffected by the wall, the spectral envelope was almost a straight line on the semi- 
logarithmic plot, showing how the spectral components decayed almost exponentially 
withj .  When the wave was a t  the wall and its crest highest (t = tw), all spectral co- 
efficients had increased substantially in order to describe the wave of greater height 
and sharper crest curvature. At t = 2tw when the wave had returned to its original 
position, but travelled in the other direction, figure 13 shows that the magnitudes of 
the spectral coefficients were actually smaller than initially, as might be expected if 
the interaction were such as to round off and reduce the wave crest. There was no 
growth of high-frequency components, the wave was still acting as a single body of 
water, the motion was quite coherent, and the nonlinear interaction had done nothing 
t o  break it up. This is not to imply that the wave was acting as a steady wave of 
translation, however, for the spectrum after the interaction was slowly changing with 
time, but the wave was still acting as a single entity. The rounding, smoothing nature 
of the nonlinear interaction in this case can be contrasted with the overtaking inter- 
action, where the high wave grew a t  the expense of the low one. 

Another way of characterizing the interaction is to examine the partition of energy, 
before, during and after the interaction, as presented in table 4. The accuracy of the 
calculation is shown by the almost-constant total energy. During the interaction, 
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Kinetic Potential Total 
Time energy energy energy 

0.167262 0.149948 0.317200 t = 0 (initial conditions) 
0.000313 0.316885 0.31 7 198 t N t, (at wall) 

t N 2t, (back at initial position) 0.167027 0.150176 0.317203 

TABLE 4. Energy partition at different stages of the reflection of a solitary wave of height 
0.2134 from a vertical wall. As the time t, when the crest was highest did not correspond pre- 
cisely to a computational point in time, it is not possible to state that kinetic energy was or was 
not precisely zero when the crest was highest. 

0 I I I 

20 40 60 80 

100 120 140 

1 60 180 200 
t 

FIauRE 13. Energy partition and its variation with time for the reflection back and forth of an 
initial solitary wave of height 0.2134. T is kinetic energy, V is potential energy. 

almost all the kinetic energy was converted into potential energy, but the collision 
had practically no effect on the energy partition after collision - to within 1 part in 
1000 the components recovered their initia.1 values. This was examined for higher 
waves too, with a similar result that even though the reflected wave was visibly 
different from the incident wave, the redistribution of mass over the whole wave was 
such as to give almost the same energy partition as initially. 
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FIGURE 14. Free-surface profile -, initial condition of a solitary wave of translation of height 
0.2134; ----, instantaneous profile after nine reflections. 

To investigate the behaviour of the wave during repeated interactions for a height 
of 0.2134 and N = 32, the program was run for a large number of time steps, during 
which time the wave was reflected repeatedly back and forth by the wall at x = 0, 
and by another wall at x = 4L which owed its existence to the symmetry of the 
problem. For these repeated interactions with the walls (or for a wave repeatedly 
progressing through mirror images of itself), the partition of energy is shown in figure 
13. After t = 0, before the first interaction, the constancy of the partition shows how 
the wave was unaffected by the walls, then all the kinetic energy was converted into 
potential energy at the centre of the interaction. After this first interaction almost the 
same behaviour was observed, as the energy partition was unchanging while the now 
quasi-solitary wave travelled across the region between the walls. However, the wave 
had been altered so that it was changing with time. After the ninth pass of the wave 
the partition was varying continually, and so symmetrically about the centre of the 
region that a periodic standing-wave motion was suggested. However, details of the 
motion did not bear this out. After that pass the partition seemed to be steadily 
evolving back to that of a solitary ‘mound’ - see time 180 on figure 13 - where the 
partition changed little while the wave was away from the walls. At all stages, however, 
the wave form was slowly changing as it propagated, and the partitition of energy 
continued to change from pass to pass. No steady-state periodic motion was observed, 
no substantial recurrence phenomena were observed. The maximum crest elevation 
of the wave was further degraded after each interaction. At  no time was there visible 
evidence of high harmonics: the wave continued to act as a whole, albeit a slowly and 
continuously changing whole. While no marked phenomena were observed, this 
coherence of the motion was interesting - the entire motion did seem to be bound to 
the main wave. As an illustration, figure 14 shows the wave profile initially, and at  the 
centre of the tenth pass, at  which time the wave momentarily was quite symmetrical. 
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Appendix. Waves over uneven topography 
Consider a layer of fluid whose motion is irrotational and two-dimensional over an 

irregular moving bottom so that the free surface is y = r(z, t) ,  but the bottom is 
defined by y = h(x, t )  instead of y = 0 as above. The boundary condition that the 
velocity normal to the bed is zero may be written 

h,+q5,hZ-q5, = 0 on y = h(x , t ) ,  (A 1) 
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where the function h(x,t) is known. For this more general case, (A 1) replaces (4); 
otherwise all other equations governing the motion (( 1)-(3)) are the same. It is assumed 
that all variables have been non-dimensionalized with respect to  some length scale, 
typically a mean depth as in $2.1, and gravitational acceleration g. 

A series representation for q4 satisfying only the field equation ( 1 )  is 

1 +N 

N j ,  -+N 
$(x, y, t )  = - C (Aj(t)  coshjky+Bj(t) sinhjky) e-$jkX, 

where a factor of $ multiplies the contributions a t  j = k 4 N .  As q5 is real, 

A - j  = A?, B-, = Bj*. (A 3) 

For notational purposes (A 2) is used here rather than the form obtained when (A 3) 
is used to express q5 explicitly as a real quantity. (A 2) is differentiated to  give 

(A 4) 

(A 5 )  

aq4 - i k  
- (x, y, t )  = - z j (A , ( t )  coshjky+ Bj(t)  sinhjky) e--ifkx, 

!?! (x, y, t )  = - j ( A j ( t )  sinhjky + B,(t) coshjky) e-ijkz, 

ax * j  

a Y  N j  

k 

at 

If all the surface elevations and Fourier coefficients are known at successive times 
t - At and t ,  then the surface elevations a t  t + At are simply obtained from the centred- 
difference approximation to  (3) : 

r ( x m ,  t+w = r (x , , t -A t )  - 2At(q5,(~,,,r,,t)-q41(~m,rm, t )r2(x, ,r , , t ) }+O((At)3) ,  (A 7) 

where the ys are obtained from (8). To advance the Fourier coefficients in time is rather 
more complicated. Surface values of q5t a t  time t may be obtained from the pressure 
equation (2) so that q5t(xm, rm, t )  are known form = - $ N ,  ..., $ N -  1.  Replacing the 
time derivatives in (A 6) by the finite-difference approximations gives 

i 
z { (A j ( t  + At)  - Aj(t - A t ) )  coshjk~(x,, t )  

+ (B , ( t+At )  -Bj ( t -At ) )  sinhjky(x,,t)}e-ijkxm-2NAt~~(xm, r,,t) = O((At ) j )  

( m = - $ N ,  ...,$ N - 1 ) .  ( A 8 )  

Using (A 3) and the approximation that the right-hand side is zero gives a set of N 
linear equations in the 2N real unknowns from 

where 9 ( A o )  = 0 and it is assumed that ${A4,} = 0. 
The remaining N equations are obtained by satisfying the kinematic boundary 

condition on the bottom (A 1) a t  time t + At, into which (A 4) and (A 5) are substituted: 

k - x j { A j ( t  + At) [ih,(x,, t + At)  coshjkh(x,, t + At)  + sinhjkh(x,, t + At)]  + Bj(t + At)  

{Ao( t+At ) ,  Aj(t + At) ,  Bj(t + At) ,  j = 1, ..., BN}, 

N i  
x [ih,(x,, t + At)  sinhjkh(x,, t + At)  + coshjkh(znL, t + A t ) ] }  e--ijkrm - ht(xVl, t + At) = 0 

( m = - i N ,  ...,+ 3-1).  ( A 9 )  

The relations (A 3) are again used to ensure that these equations are real. At each time 
st~ep, 2N linear equations (A 8) and (A 9) in 2N unknowns must be solved, to  advance 
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the solution. When ~ ( x ~ , ~ ,  t + At), for all m, and A,(t + At) and B,(t + At) are all known, 
the procedure can be repeated at the next time step, and so on. 

I n  this case, the implied periodicity of the problem may present more of a limitation 
than in situations where the bed is only horizontal. Nevertheless there are many 
problems, such as the scattering of a solitary wave by a single hump, which may be 
quite accurately simulated by this method. 
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